Откуда взялись атомы. Водород в природе (0,9% в Земной коре) Нахождение водорода в природе

Разное состояние атомов в твердом веществе земной коры В. И. Вернадский назвал формами нахождения элементов. В наше время представление об этих формах успешно используется геохимиками для решения практических задач при поисках месторождений полезных ископаемых.
Как нам уже известно, при достаточно большой концентрации атомы образуют кристаллохимические структуры со строго упорядоченным расположением. При очень низкой концентрации химического элемента его атомы не могут образовывать самостоятельные соединения. Если величина радиусов этих атомов соответствует имеющимся кристаллохимическим структурам, то атомы могут в них войти по законам изоморфизма. Если же такого соответствия нет, атомы остаются в твердом кристаллическом веществе в неупорядоченном рассеянном состоянии. Кристаллическое и рассеянное состояния являются двумя важнейшими формами нахождения атомов в земной коре. Преобладание той или другой формы зависит от значения кларка элемента.
Восемь химических элементов, содержащихся в земной коре в количестве более 1%, называются главными. Атомов этих элементов так много, что их большая часть находится в упорядоченном состоянии в кристаллическом веществе. К ним можно добавить второстепенные элементы, содержащиеся в количестве десятых долей процента. Все другие химические элементы, каждый из которых присутствует в земной коре в количестве меньше 0,1%, следует называть малораспространенными. Они ведут себя неодинаково. Одни из них способны концентрироваться в отдельных местах и образуют многочисленные самостоятельные минералы. Другие более или менее равномерно рассеяны в земной коре, редко или даже совсем не образуют минералов. Поэтому советский геохимик А. А. Беус предлагает подразделять малораспространенные химические элементы на минералогенные, т. е. образующие минералы, и рассеянные, их не образующие.
Строго говоря, атомы всех химических элементов имеются в рассеянном состоянии. Однако есть такие, которые совершенно не встречаются в виде самостоятельных соединений и полностью находятся в виде изоморфной примеси или в рассеянном состоянии. К ним относятся рубидий, большая часть редкоземельных элементов, гафний, индий, рений, все благородные газы, все радиоактивные элементы, кроме урана и тория.
В настоящее время под рассеянными элементами подразумевают малораспространенные элементы, находящиеся в неминералогической форме, т. е. входящие в состав минералов в виде такой незначительной примеси, что не могут быть отражены в химической формуле. Согласно подсчетам В. И. Вернадского, в 1 см3 твердого вещества земной коры присутствует такое числа атомов в рассеянном состоянии: лития.— .10й, брома — 1018, иттрия — 10", галлия — 1018 и т. д.

Для геохимии важно выяснить принцип распространения химических элементов в земной коре. Почему одни из них часто встречаются в природе, другие значительно реже, а третьи вообще представляют собой «музейные редкости»?

Мощным инструментом для объяснения многих геохи­мических явлений служит Периодический закон Д.И. Мен­делеева. В частности с его помощью может быть исследован вопрос о распространённости химических элементов в зем­ной коре.

Впервые связь геохимических свойств элементов с по­ложением их в Периодической системе химических элементов показали Д.И. Мен­делеев, В.И. Вернадский и А.Е. Ферсман.

Правила (законы) геохимии

Правило Менделеева

В 1869 году, работая над периодическим законом, Д.И. Менделеев сформулировал правило: «Элементы с малым атомным весом в общем более распространены, чем элемен­ты с большим атомным весом » (см. приложение 1, Периодическую систему химических элементов). Позднее, с раскрытием строения атома было показано, что у химических элементов с малой атомной массой число протонов приблизительно равно числу нейтронов в ядрах их атомов, то есть отношение этих двух величин равно или близко к единице: для кислорода = 1,0; для алюминия

У менее распространённых элементов в ядрах атомов преобладают нейтроны и отношение их числа к числу протонов существенно больше единицы: для радия ; для урана = 1,59.

Дальнейшее развитие «правило Менделеева» нашло в работах датского физика Нильса Бора и российского химика, академика АН СССР Виктора Ивановича Спицына.

Виктор Иванович Спицын (1902-1988)

Правило Оддо

В 1914 году итальянский химик Джузеппе Оддо сформулиро­вал другое правило: «Атомные веса наиболее распростра­нённых элементов выражаются числами, кратными четырём, или мало отклоняются от таких чисел ». Позднее это правило получило некоторую трактовку в свете новых данных о строении атомов: ядерная конструкция, состоящая из двух протонов и двух нейтронов обладает особой проч­ностью.

Правило Гаркинса

В 1917 году американский физикохимик Уильям Дрепер Гаркинс (Харкинс) обратил внимание на то, что химические элементы с чётными атомными (порядковыми) номерами распространены в природе в несколько раз больше, чем со­седние с ними элементы с нечётными номерами. Подсчёты подтвердили наблюдение: из первых 28 элементов перио­дической системы 14 чётных составляют до 86 %, а нечёт­ные - только 13,6 % от массы земной коры.

В этом случае объяснением может служить тот факт, что химические элементы с нечётными значениями атомного номера содержат частицы, не связанные в гелионы, а потому являются менее стабильными.

Из правила Гаркинса имеется много исключений: так, чётные благордные газы распространены крайне слабо, а нечётный алюминий Al обгоняет по распространению чётный магний Mg. Однако есть предположения, что это правило распространяется не столько на земную кору, сколько на весь земной шар. Хотя достоверных данных о составе глубинных слоёв земного шара пока нет, но некоторые сведения позволяют предполагать, что количество магния в целом в зем­ном шаре вдвое больше, чем алюминия. Количество же гелия He в космическом пространстве во много раз превосхо­дит его земные запасы. Это едва ли не самый распространённый химический элемент Вселенной.

Правило Ферсмана

А.Е. Ферсман наглядно показал зависимость распространённости химических элементов в земной коре от их атомного (порядкового) номера. Эта зависимость становится особо очевидной, если построить график в координатах: атомный номер - лога­рифм атомного кларка. На графике прослеживается чёткая тенденция: атомные кларки понижаются с увели­чением атомных номеров химических элементов.

Рис. . Распространённость химических элементов в земной коре

Рис. 5. Распространённость химических элементов во Вселенной

(lg C – логарифмы атомных кларков по Ферсману)

(данные о количестве атомов отнесены к 10 6 атомов кремния)

Сплошная кривая – чётные значения Z,

пунктирная – нечётные значения Z

Однако имеются и некоторые отклонения от этого пра­вила: часть химических элементов значительно превосходит ожидаемые значения распространённости (кислород O, кремний Si, кальций Ca, железо Fe, барий Ba), а другие (литий Li, бериллий Be, бор B) встречаются много реже, чем следовало ожидать, исходя из правила Ферсмана. Такие химические элементы называются соответственно избыточными и дефицитными .

Формулировка основного закона геохимии дана на с.

Водород (Н) очень легкий химический элемент, с содержанием в Земной коре 0,9% по массе, а в воде 11,19%.

Характеристика водорода

По легкости он первый среди газов. При нормальных условиях безвкусен, бесцветен, и абсолютно без запаха. При попадании в термосферу улетает в космос из-за малого веса.

Во всей вселенной это самый многочисленный химический элемент (75% от всей массы веществ). Настолько, что многие звезды в космическом пространстве состоят полностью из него. Например, Солнце. Его основной компонент - водород. А тепло и свет это итог выделения энергии при слиянии ядер материала. Так же в космосе есть целые облака из его молекул различной величины, плотности и температуры.

Физические свойства

Высокая температура и давление значительно меняют его качества, но при обычных условиях он:

Обладает высокой теплопроводностью, если сравнивать с другими газами,

Нетоксичен и плохо растворим в воде,

С плотностью 0,0899 г/л при 0°С и 1 атм.,

Превращается в жидкость при температуре -252,8°С

Становится твердым при -259,1°С.,

Удельная теплота сгорания 120,9.106 Дж/кг.

Для превращения в жидкость или твердое состояние требуются высокое давление и очень низкие температуры. В сжиженном состоянии он текуч и легок.

Химические свойства

Под давлением и при охлаждении (-252,87 гр. С) водород обретает жидкое состояние, которое по весу легче любого аналога. В нем он занимает меньше места, чем в газообразном виде.

Он типичный неметалл. В лабораториях его получают путем взаимодействия металлов (например, цинка или железа) с разбавленными кислотами. При обычных условиях малоактивен и вступает в реакцию только с активными неметаллами. Водород может отделять кислород из оксидов, и восстанавливать металлы из соединений. Он и его смеси образуют водородную связь с некоторыми элементами.

Газ хорошо растворяется в этаноле и во многих металлах, особенно в палладии. Серебро его не растворяет. Водород может окисляться во время сжигания в кислороде или на воздухе, и при взаимодействии с галогенами.

Во время соединения с кислородом, образуется вода. Если температура при этом обычная, то реакция идет медленно, если выше 550°С - со взрывом (превращается в гремучий газ).

Нахождение водорода в природе

Хотя водорода очень много на нашей планете, но в чистом виде его найти нелегко. Немного можно обнаружить при извержении вулканов, во время добычи нефти и в месте разложения органических веществ.

Больше половины всего количества находится в составе с водой. Так же он входит в структуру нефти, различной глины, горючих газов, животных и растений (присутствие в каждой живой клетке 50% по числу атомов).

Круговорот водорода в природе

Каждый год в водоемах и почве разлагается колоссальное количество (миллиарды тонн) остатков растений и это разложение выплескивает в атмосферу огромную массу водорода. Так же он выделяется при любом брожении, вызываемом бактериями, сжигании и наравне с кислородом участвует в круговороте воды.

Области применения водорода

Элемент активно используется человечеством в своей деятельности, поэтому мы научились получать его в промышленных масштабах для:

Метеорологии, химпроизводства;

Производства маргарина;

Как горючее для ракет (жидкий водород);

Электроэнергетики для охлаждения электрических генераторов;

Сварки и резки металлов.

Масса водорода используется при производстве синтетического бензина (для улучшения качества топлива низкого качества), аммиака, хлороводорода, спиртов, и других материалов. Атомная энергетика активно использует его изотопы.

Препарат «перекись водорода» широко применяют в металлургии, электронной промышленности, целлюлозно-бумажном производстве, при отбеливании льняных и хлопковых тканей, для изготовления красок для волос и косметики, полимеров и в медицине для обработки ран.

«Взрывной» характер этого газа может стать гибельным оружием - водородной бомбой. Ее взрыв сопровождается выбросом огромного количества радиоактивных веществ и губительно для всего живого.

Соприкосновение жидкого водорода и кожных покровов грозит сильным и болезненным обморожением.

  • 8. Неорганические, органические компоненты атмосферы. Аэроионы.
  • Аэроионы
  • 9. Химические превращения соединений в атмосфере. Реакционноспособные частицы атмосферы. Озон. Молекулярный и атомарный кислород
  • 10. Химические превращения соединений в атмосфере. Гидроксильный и гидропероксидный радикалы.
  • 11. Химические превращения соединений в атмосфере. Оксиды азота. Диоксиды серы.
  • 12. Фотохимическое окисление метана (схема превращений). Реакции гомологов метана. Атмосферная химия углеводородов. Алкены.
  • 13. Химические превращения соединений в атмосфере. Бензол и его гомологи.
  • 14. Фотохимия производных углеводородов. Альдегиды и кетоны.
  • 15. Фотохимия производных углеводородов. Карбоновые кислоты и спирты. Амины и серосодержащие соединения.
  • 16. Фотохимия загрязненной атмосферы городов. Фотохимическое образование смога.
  • 17. Атмосферная химия галогенсодержащих соединений. Влияние окислов азота и галогенсодержащих органических соединений на слой озона.
  • 18. Химия загрязненной атмосферы городов. Разрушение металлов, облицовки зданий, стекол. Проблема гибели лесов.
  • 19. Основные виды природных вод. Классификация вод.
  • 20. Группы, типы, классы, семейства, роды вод. Общая минерализация вод.
  • 21. Ведущие и редкие ионы природных вод. Классификация природных вод по составу ионов.
  • 22. Энергетическая характеристика ионов. Кислотно-основное равновесие в природных водоемах.
  • 23. Окислительно-восстановительные условия природных вод.
  • 24. Диаграмма стабильности воды (ре-рН).
  • 26. Общая щелочность вод. Процессы закисления поверхностных водоемов.
  • 27. Основные свойства воды. Газы природных вод
  • Газы природных вод
  • 30. Загрязнения грунтовых, речных и морских вод органическими остатками.
  • 31. Загрязнения грунтовых, речных и морских вод неорганическими остатками.
  • 2 Кислотные выбросы.
  • 32. Загрязнения грунтовых, речных и морских вод тяжелыми металлами.
  • 33. Коррозия металлов в водной среде. Факторы, влияющие на интенсивность процесса коррозии.
  • 34. Разрушение бетона и железобетона под действием воды.
  • 35. Образование почвенного слоя. Классификация почвенных частиц по крупности и механическому составу.
  • Классификация почвенных частиц по их крупности
  • 35. Элементный и фазовый состав почв.
  • 37. Влагоемкость, водопроницаемость почв. Различные формы воды в почве.
  • 38. Почвенные растворы.
  • 39. Катионно-обменная способность почв. Поглотительная способность почвы. Селективность катионного обмена.
  • 40. Формы соединений алюминия в почвах. Виды почвенной кислотности.
  • 41. Соединения кремния и алюмосиликаты в почвах.
  • 42. Минеральные и органические соединения углерода в почве. Значение гумуса. Диоксид углерода, угольная кислота и карбонаты
  • Органические вещества и их значение
  • 43. Подразделение гумусовых веществ почвы.
  • 44. Гумус. Специфические гумусовые соединения.
  • Фульвокислоты
  • 45. Неспецифические гумусовые соединения. Негидролизуемый остаток.
  • 46. Гумусовые кислоты почв.
  • 47. Антропогенное загрязнение почв. Кислотное загрязнение.
  • 48. Антропогенное загрязнение почв. Влияние тяжелых металлов на состояние почв и развитие растений.
  • 49. Антропогенное загрязнение почв. Пестициды в почве.
  • 50. Антропогенное загрязнение почв. Влияние водно-солевого режима на состояние почвы.
  • Ответы на вопросы,

    выносимых на экзамен по дисциплине «Физико-химические процессы в окружающей среде» для студентов III курса специальности «Экологический менеджмент и аудит в промышленности»

      Распространенность атомов в окружающей среде. Кларки элементов.

    Кларк элемента – числовая оценка среднего содержания элемента в земной коре, гидросфере, атмосфере, Земле в целом, различных типах горных пород, космических объектах и др. Кларк элемента может быть выражен в единицах массы (%, г/т), либо в атомных %. Введен Ферсманом, назван в честь Франка Унглизорта, американского геохимика.

    Количественную распространенность химических элементов в земной коре впервые установил Кларк. В земную кору он включил также гидросферу и атмосферу. Однако масса гидросферы составляет несколько %, а атмосфера – сотые доли % от массы твердой земной коры, поэтому числа Кларка отражают в основном состав твердой земной коры. Так, в 1889 году были рассчитаны кларки для 10 элементов, в 1924 – для 50 элементов.

    Современные радиометрические, нейтронно-активационные атомно-адсорбционные и другие методы анализа позволяют с большой точностью и чувствительностью определить содержание химических элементов в горных породах и минералах. Представления о кларках изменились. Н-р: Ge в 1898 году Фокс считал кларк равный п *10 -10 %. Ge был плохо изучен не имел практического значения. В 1924 году для него кларк был рассчитан как п*10 -9 % (Кларк и Г. Вашингтон). Позже Ge был обнаружен в углях, и его кларк возрос до 0,п%. Ge применяют в радиотехнике, поиск германиевого сырья, детальное изучение геохимии Ge показали, что Ge не так уж редок в земной коре, его кларк в литосфере составляет 1,4*10 -4 %, почти такой же как у Sn, As, его намного больше в земной коре чем Au, Pt, Ag.

    Распространенность атомов в ос

    Вернадский ввел положение о рассеянном состоянии химических элементов, и оно подтвердилось. Все элементы есть везде, речь может идти только о недостаточности чувствительности анализа, не позволяющего определить содержание того или другого элемента в изучаемой среде. Это положение о всеобщем рассеянии химических элементов именуется законом Кларка-Вернадского.

    Исходя из кларков элементов в твердой земной коре (про Виноградову) почти ½ твердая земная кора состоит из О, т.е Земная кора - это «кислородная сфера», кислородное вещество.


    Кларки большинства элементов не превышают 0,01-0,0001% - это редкие элементы. Если эти элементы обладают слабой способностью к концентрированию, они называются резкими рассеянными (Br, In, Ra, I, Hf).

    Н-р: Для U и Br значения кларков составляют ≈ 2,5*10 -4 , 2,1* 10-4 соответственно, но U просто редкий элемент, т.к. известны его месторождения, а Br – редкий рассеянный, т.к. он не концентрируется в земной коре. Микроэлементы – элементы, содержащиеся в данной системе в малых количествах (≈ 0,01% и менее). Так, Al – микроэлемент в организмах и макроэлемент в силикатных породах.

    Классификация элементов по Вернадскому.

    В земной коре родственные по периодической системе элементы ведут себя неодинаково – мигрируют в земную кору по-разному. Вернадский учитывал самые важные моменты истории элементов в земной коре. Главное значение предовалось таким явлениям и процессам как радиоактивность, обратимость и необратимость миграции. Способность давать минералы. Вернадский выделил 6 групп элементов:

      благородные газы (He, Ne, Ar, Kr, Xe) – 5 элементов;

      благородные металлы (Ru, Rh, Pd, Os, Ir, Pt, Au) – 7 элементов;

      циклические элементы (участвующие в сложных круговоротах) – 44 элемента;

      рассеянные элементы – 11 элементов;

      сильно радиоактивные элементы (Po, Ra, Rn, Ac, Th, Pa, U) – 7 элементов;

      элементы редких земель – 15 элементов.

    Элементы 3 группы по массе преобладают в земной коре из них в основном состоят горные породы, воды, организмы.

    Представления из повседневного опыта не совпадают с реальными данными. Так, Zn, Cu широко распространены в быту и технике, а Zr (цирконий) и Ti для нас редкие элементы. Хотя Zr в земной коре в 4 раза больше чем Cu, а Ti – в 95 раз. «Редкость» этих элементов объясняется трудностью их извлечения из руд.

    Химические элементы вступают во взаимодействия друг с другом не пропорционально их массам, а в соответствии с количеством атомов. Поэтому кларки могут быть рассчитаны не только в массовых %, но и в % от числа атомов, т.е. с учетом атомных масс (Чирвинский, Ферсман). При этом кларки тяжелых элементов уменьшаются, а легких – увеличиваются.

    Так, например:

    Расчет на число атомов дает более контрастную картину распространенности химических элементов – еще большее преобладание кислорода и редкость тяжелых элементов.

    Когда был установлен средний состав земной коры, возник вопрос о причине неравномерности распространения элементов. Это стаи связывать с особенностями строения атомов.

    Рассмотрим связь значения кларков с химическими свойствами элементов.

    Так щелочные металлы Li, Na, K, Rb, Cs, Fr химическом отношении близки друг к другу – один валентный электрон, но значения кларков отличаются – Na и K - ≈ 2,5; Rb - 1,5*10 -2 ; Li - 3,2*10 -3 ;Cs – 3,7*10 -4 ;Fr – искусственный элемент. Резко различаются значения кларков для F и Cl, Br и I, Si (29,5) и Ge (1,4*10 -4), Ba (6,5*10 -2) и Ra (2*10 -10).

    С другой стороны, различные в химическом отношении элементы имеют близкие кларки – Mn (0,1) и P (0,093), Rb (1,5*10 -2) и Cl (1,7*10 -2).

    Ферсман построил график зависимости значений атомных кларков для четных и нечетных элементов Периодической системы от порядкового номера элемента. Выяснилось, что с усложнением строения атомного ядра (утяжеления) кларки элементов уменьшаются. Однако эти зависимости (кривые) получились ломаными.

    Ферсман прочертил гипотетическую среднюю линию, которая плавно понижалась по мере возрастания порядкового номера элемента. Элементы расположенные выше средней линии, образующие пики, ученый назвал избыточными (O, Si, Fe и др.), а расположенные ниже линии – дефицитными (инертные газы и др.). Из полученной зависимости следует, что в земной коре преобладают легкие атомы, занимающие начальные клетки Периодической системы, ядра которых содержат небольшое количество протонов и нейтронов. Действительно, после Fe (№26) нет ни одного распространенного элемента.

    Далее Оддо (итальянский ученый) и Гаркинсом (американский ученый) в 1925-28 гг. была установлена другая особенности распространенности элементов. В Земной коре преобладают элементы с четным порядковым номером и атомными массами. Среди соседних элементов у четных элементов кларки почти всегда выше, чем у нечетных. Для 9 наиболее распространенных элементов (8 O, 14 Si, 13 Al, 26 Fe, 20 Ca, 11 Na, 19 K, 12 Mg, 22 Ti) массовые кларки четных составляют в сумме 86,43% , а нечетных – 13,05%.Особенно велики кларки элементов, атомная масса которых делится на 4, это – O, Mg, Si, Ca.

    По данным исследований Ферсмана, ядра типа 4q (q –целое число) составляют 86,3% земной коры. Менее распространены ядра типа 4q +3 (12,7%) и совсем мало ядра типа 4q+1 и 4q+2 (1%).

    Среди четных элементов, начиная с He, наибольшими кларками обладают каждый шестой: O (№8), Si(№14), Ca (№20), Fe (№26). Для нечетных элементов – аналогичное правило (начиная с Н) – N (№7), Al (№13), K (№19), Mg (№25).

    Итак, в земной коре преобладают ядра с небольшим и четным числом протонов и нейтронов.

    С течением времени кларки изменились. Так в результате радиоактивного распада стало меньше U и Th, но больше Pb. В изменении значений кларков элементов сыграли роль и такие процессы как диссипация газов, выпадение метеоритов.

      Основные тенденции химических изменений в земной коре. Большой круговорот вещества в земной коре.

    КРУГОВОРОТ ВЕЩЕСТВ. Вещество земной коры находится в непрерывном движении, вызванном разнообразными причинами, связанными с физ.-хим. свойствами вещества, планетными, геологическими, географическими и биол. условиями земли. Это движение неизменно и непрерывно происходит в течение геологического времени-не менее полутора и по-видимому не более трех млрд. лет. В последние годы выросла новая наука геологического цикла - геохимия, имеющая задачей изучение хим. элементов, строящих нашу планету. Основным предметом ее изучения являются движения хим. элементов вещества земли, какими бы причинами эти движения ни были вызваны. Эти движения элементов называются миграциями хим. элементов. Среди миграций есть такие, во время которых хим. элемент через больший или меньший промежуток времени неизбежно возвращается в начальное исходное состояние; история таких хим. элементов в земной коре может быть сведена т. о. к обратимому процессу и представлена в форме кругового процесса, круговорота. Этого рода миграции характерны не для всех элементов, но для значительного их числа, в том числе для огромного большинства хим. элементов, строящих растительные или животные организмы и окружающую нас среду-океаны и воды, горные породы и воздух. Для таких элементов в круговороте веществ находится вся или подавляющая масса их атомов, у других лишь ничтожная их часть охвачена круговоротами. Несомненно, что большая часть вещества земной коры до глубины в 20-25 км охвачена круговоротами. Для следующих хим. элементов круговые процессы являются характерными и господствующими среди их миграций (цифра указывает на порядковое число). Н, Ве4, В5, С«, N7, 08, Р9, Nan,Mg12,Aha, Sii4,Pi5, Sie, Cli7, K19, Ca2o, Ti22, V23, Cr24, Mn25, Fe2e, Co27, Ni28, Cu29, Zn30, Ge32, As33,Se34, Sr38,Mo42, Ag47,Cd48, Sn50, Sb51, Te62, Ba56) W74, Au79,Hg80,T]81,Pb82,Bi83. Эти элементы могут быть на этом основании отделены от других элементов как элементы циклические или органогенные. Т.о. круговороты характеризуют 42 элемента из 92 входящих в Менделеевскую систему элементов, причем в это число входят самые обычные господствующие земные элементы.

    Остановимся на К. первого рода, заключающих биогенные миграции. Эти К. захватывают биосферу (т. е. атмосферу, гидросферу, кору выветривания). Под гидросферой они захватывают подходящую к океаническому дну базальтовую оболочку. Под сушей они в последовательности углубления обнимают толщу осадочных пород (стратосферу), метаморфическую и гранитную оболочки и входят в базальтовую оболочку. Из земных глубин, лежащих за базальтовой оболочкой, вещество земли не попадает в наблюдаемые К. Оно не попадает в них также сверху из-за пределов верхних частей стратосферы. Т. о. круговороты хим. элементов являются поверхностными явлениями, идущими в атмосфере до высот в 15-20 км (не выше), а в литосфере-не глубже 15-20 км. Всякий К., для того чтобы он мог постоянно возобновляться, требует притока внешней энергии. Известны два главных и несомнен. источника такой энергии: 1) космическая энергия-излучения солнца (от нее почти всецело зависит биогенная миграция) и 2) атомная энергия, связанная с радиоактивным распадом элементов "78 ряда урана, тория, калия, рубидия. С меньшей степенью точности можно выделить энергию механическую, связанную с движением (благодаря тяготению) земных масс, и вероятно космическую энергию, проникающую сверху (лучи Гесса).

    Круговороты, захватывающие несколько земных оболочек, идут медленно, с остановками и могут быть замечены только в геологическом времени. Часто они охватывают несколько геолог, периодов. Они вызываются геолог, смещениями суши и океана. Части К. могут идти быстро (напр. биогенная миграция).

    "

    Различают следующие формы нахождения химических элементов в земной коре : 1) самостоятельные минеральные виды; 2) примеси и смеси – а) неструктурные (состояние рассеяния), б) структурные (изоморфные примеси и смеси); 3) силикатные расплавы; 4) водные растворы и газовые смеси; 5) биогенная форма. Наиболее изученными являются первые две формы.

    Самостоятельные минеральные виды (минералы) представляют важнейшую форму существования химических элементов в земной коре. По распространенности минералы делятся на пять групп: весьма распространенные, распространенные, распространенные рудные, редкие, очень редкие.

    Неструктурные примеси не имеют кристаллохимической связи с кристаллической решеткой минерала-хозяина и находятся в состоянии рассеяния (по А.Е. Ферсману – эндокриптное рассеяние). Эта форма нахождения характерна для группы радиоактивных элементов, а также для элементов, не образующих самостоятельные минеральные виды. Особенно благоприятны для рассеяния атмосфера и гидросфера. За нижний предел рассеяния условно принято содержание 1 атома в 1 см 3 вещества.

    Структурные примеси обычно называются изоморфными. Изоморфизмом называется свойство атомов одного химического элемента замещать в узлах кристаллической решетки атомы другого химического элемента с образованием однородного (гомогенного) смешанного кристалла переменного состава . Образование изоморфной смеси определяется в первую очередь близостью параметров кристаллических решеток смешивающихся компонентов. Компоненты, имеющие аналогичную структуру, но не образующие однородного смешанного кристалла, называются изоструктурными (например, галит NaCl и галенит PbS).

    В настоящее время выделяется несколько типов изоморфизма с учетом следующих особенностей: 1)степень изоморфной смесимости – совершенный и несовершенный ; 2)валентности ионов, участвующих в замещениях – изовалентный и гетеровалентный ; 3)механизм вхождения атома в кристаллическую решетку – полярный . Для изовалентного изоморфизма существует правило : если в замещении участвуют ионы большего или меньшего радиусов, то в кристаллическую решетку в первую очередь входит ион меньшего радиуса, во вторую очередь – ион большего радиуса . Гетеровалентный изоморфизм подчиняется закону диагональных рядов периодической системы Д.И. Менделеева, установленный А.Е. Ферсманом.

    Образование изоморфных смесей обусловлено несколькими факторами, среди которых выделены внутренние и внешние. Внутренние факторы определяются особенностями, присущими атому (иону или молекуле); к ним относятся следующие: химическая индифферентность атомов, размеры атомов (ионов), сходства вида химической связи и кристаллических структур; сохранение электростатического равновесия в процессе формирования изоморфной смеси. Внешние факторы изоморфизма включают физико-химические условия среды – температуру, давление, концентрацию изоморфных компонентов. В условиях высоких температур изоморфная смесимость компонентов возрастает. С понижением температуры минерал освобождается от примесей. Это явление А.Е. Ферсманом было названо автолизией (самоочисткой). По мере повышения давления в кристаллическую решетку минерала-хозяина предпочтительно входят атомы с меньшими размерами радиусов. Совместная роль температуры и давления иллюстрируется изоморфными рядами В.И. Вернадского.



    Изоморфные смеси стабильны при сохранении физико-химических условий их формирования. Изменение этих условий приводит к тому, что смеси распадаются на составные компоненты. В эндогенных условиях главными факторами распада являются температура и давление. В экзогенных условиях причины разложения изоморфных смесей более разнообразны: изменение валентности изоморфно замещающих друг друга химических элементов, сопровождаемое изменением ионных радиусов; изменение типа химической связи; изменение рН гипергенных растворов.

    Явление изоморфизма широко используется для решения различных геологических задач, в частности палеотермометрии. Распад изоморфных смесей часто приводит к образованию легко растворимых соединений, которые в результате выщелачивания входят в состав подземных вод, являющихся объектом гидрогеохимических исследований (1.140–159; 2.128–130; 3.96–102).

    Loading...Loading...