Скорость плоской волны формула. Плоская волна

Колебательный процесс, распространяющийся в среде в виде волны, фронт которой представляет собой плоскость , называется плоской звуковой волной . На практике плоская волна может образовываться источником, линейные размеры которого велики по сравнению с длинной излученной им волн, и если зона волнового поля находится на достаточно большом удалении от него. Но так обстоит дело в неограниченной среде. Если источник огражден каким-либо препятствием, то классический пример плоской волны, это – колебания, возбужденные жестким несгибаемым поршнем в длинной трубе (волноводе) с жесткими стенками, если диаметр поршня значительно меньше длины - излучаемых волн. Поверхность фронта в трубе из-за жестких стенок не меняется по мере распространения волны по волноводу(см. рис. 3.3). Потерями звуковой энергии на поглощение и рассеяние в воздушной среде пренебрегаем.

Если излучатель (поршень) совершает колебания по гармоническому закону с частотой
, а размеры поршня (диаметр волновода) значительно меньше длины звуковой волны, то давление, создаваемое около его поверхности,
. Очевидно, что на расстояниих давление будет
, где
– время пробега волны от излучателя до точкиx. Это выражение удобнее записать, как:
, где
- волновое число распространения волны. Произведение
- определяемый фазовый набег колебательного процесса в точке, удаленной на расстояниех от излучателя.

Подставляя полученное выражение в уравнение движения (3.1), проинтегрируем последнее относительно колебательной скорости:

(3.8)

Вообще для произвольного момента времени оказывается, что:

. (3.9)

Правая часть выражения (3.9) – характеристическое, волновое, или удельное акустическое сопротивление среды (импеданс). Само уравнение (3.), иногда, называется акустическим «законом Ома». Как следует из решения, полученное уравнение справедливо в поле плоской волны. Давление и колебательная скорость синфазны , что является следствием чисто активного сопротивления среды.

Пример: Максимальное давление в плоской волне
Па. Определить амплитуду смещения частиц воздуха по частоте?

Решение: Так как , тогда:

Из выражения (3.10) следует, что амплитуда звуковых волн очень мала, по крайней мере, в сравнении с размерами самих источников звука.

Помимо скалярного потенциала, давления и колебательной скорости звуковое поле характеризуется и энергетическими характеристиками, важнейшей из которых является интенсивность - вектор плотности потока энергии, переносимой волной за единицу времени. По определению
- есть результат произведения звукового давления на колебательную скорость.

При отсутствии потерь в среде плоская волна, теоретически, может распространяться без ослабления на сколь угодно большие расстояния, т.к. сохранение формы плоского фронта свидетельствует об отсутствии «расходимости» волны, а, значит, и об отсутствии ослабления. Иначе обстоит дело, если волна обладает искривленным фронтом. К подобным волнам относят, прежде всего, сферическую и цилиндрическую волны.

3.1.3. Модели волн с неплоским фронтом

У сферической волны поверхность равных фаз является сферой. Источником такой волны также является сфера, все точки которой колеблются с одинаковыми амплитудами и фазами, а центр остается неподвижен (см. рис. 3.4, а).

Сферическая волна описывается функцией, являющейся решением волнового уравнения в сферической системе координат, для потенциала волны, распространяющейся от источника:

. (3.11)

Действуя по аналогии с плоской волной, можно показать, что на расстояниях от источника звука значительно больше длины изучаемых волн:
. Это значит, что акустический «закон Ома» выполняется и в данном случае. В практических условиях сферические волны возбуждаются, преимущественно, компактными источниками произвольной формы, размеры которых значительно меньше длины возбуждаемых звуковых или ультразвуковых волн. Иными словами, «точечный» источник излучает, преимущественно, сферические волны. На больших расстояниях от источника или, как принято говорить, в «дальней» зоне сферическая волна применительно к ограниченным по размерам участкам волнового фронта ведет себя как плоская волна, или как говорят: «вырождается в плоскую волну». Требования к малости участка определяются не только частотой, но
- разностью расстояний между сравниваемыми точками. Отметим, что указанная функция
имеет особенность:
при
. Это вызывает определенные трудности при строгом решении дифракционных задач, связанных с излучением и рассеянием звука.

В свою очередь цилиндрические волны (поверхность волнового фронта - цилиндр) излучаются бесконечно длинным пульсирующим цилиндром (см. рис.3.4).

В дальней зоне выражение для функции потенциала такого источника асимптотически стремится к выражению:


. (3.12)

Можно показать, что и в этом случае выполняется соотношение
. Цилиндрические волны, как и сферические, в дальней зоневырождаются в плоские волны.

Ослабление упругих волн при распространении связано не только с изменением кривизны волнового фронта («расходимостью» волны), но и с наличием «затухания» т.е. ослабления звука. Формально наличие затухания в среде можно описать, представив волновое число комплексным
. Тогда, например, для плоской волны давления можно получить:Р(x , t ) = P макс
=
.

Видно, что вещественная часть комплексного волнового числа описывает пространственную бегущую волну, а мнимая часть характеризует ослабление волны по амплитуде. Поэтому величина  называется коэффициентом ослабления (затухания),  - величина размерная (Непер/м). Один «Непер» соответствует изменению амплитуды волны в «е» раз при перемещении волнового фронта на единицу длины. В общем случае ослабление определяется поглощением и рассеянием в среде:  =  погл +  расс. Указанные эффекты определяются разными причинами и могут рассматриваться отдельно.

В общем случае поглощение связано с необратимыми потерями звуковой энергии при ее превращении в тепло.

Рассеяние связано с переориентацией части энергии падающей волны на другие направления, не совпадающие с падающей волной.

ПЛОСКАЯ ВОЛНА

ПЛОСКАЯ ВОЛНА

Волна, у к-рой направление распространения одинаково во всех точках пространства. Простейший пример - однородная монохроматич. незатухающая П. в.:

и(z, t)=Aeiwt±ikz, (1)

где А - амплитуда, j= wt±kz - , w=2p/Т - круговая частота, Т -период колебаний, k - . Поверхности постоянной фазы (фазовые фронты) j=const П. в. являются плоскостями.

При отсутствии дисперсии, когда vф и vгр одинаковы и постоянны (vгр=vф= v), существуют стационарные (т. е. перемещающиеся как целое) бегущие П. в., к-рые допускают общее представление вида:

u(z, t)=f(z±vt), (2)

где f - произвольная функция. В нелинейных средах с дисперсией также возможны стационарные бегущие П. в. типа (2), но их форма уже не произвольна, а зависит как от параметров системы, так и от характера движения . В поглощающих (диссипативных) средах П. в. уменьшают свою амплитуду по мере распространения; при линейном затухании это может быть учтено путём замены в (1) k на комплексное волновое число kд ± ikм, где kм - коэфф. затухания П. в.

Однородная П. в., занимающая всё бесконечное , является идеализацией, однако любое волновое , сосредоточенное в конечной области (напр., направляемое линиями передачи или волноводами), можно представить как суперпозицию П. в. с тем или иным пространств. спектром k. При этом волна может по-прежнему иметь плоский фазовый фронт, но неоднородное амплитуды. Такие П. в. наз. плоскими неоднородными волнами. Отдельные участки сферич. и цилиндрич. волн, малые по сравнению с радиусом кривизны фазового фронта, приближённо ведут себя как П. в.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ПЛОСКАЯ ВОЛНА

- волна, ук-рой направление распространения одинаково во всех точках пространства.

где А - амплитуда,- фаза,- круговая частота, Т - период колебаний, k - волновое число. = const П. в. являются плоскостями.
При отсутствии дисперсии, когда фазоваяскорость v ф и групповая v гр одинаковы и постоянны (v гр = v ф = v ) существуют стационарные (т. е. перемещающиеся как целое) бегущиеП. в., к-рые можно представить в общем виде

где f - произвольная ф-ция. В нелинейныхсредах с дисперсией также возможны стационарные бегущие П. в. типа (2),но их форма уже не произвольна, а зависит как от параметров системы, таки от характера движения волны. В поглощающих (диссипативных) средах П. k на комплексное волновоечисло k д ik м,где k м - коэф. затухания П. в. Однородная П. в., занимающаявсё бесконечное , является идеализацией, однако любое волновоеполе, сосредоточенное в конечной области (напр., направляемое линиямипередачи или волноводами), можно представить как суперпозициюП. в. с тем или иным пространственным спектром k. При этом волнаможет no-прежнему иметь плоский фазовый фронт, во неоднородное распределениеамплитуды. Такие П. в. наз. плоскими неоднородными волнами. Отд. участкисферич. или цилиндрич. волн, малые по сравнению с радиусом кривизны фазовогофронта, приближённо ведут себя как П. в.

Лит. см. при ст. Волны.

М. А. Миллер, Л. А. Островский.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Волны, зависящие от одной пространственной координаты

Анимация

Описание

В плоской волне всем точкам среды, лежащим в любой плоскости, перпендикулярной направлению распространения волны, в каждый момент времени соответствуют одинаковые смещения и скорости частиц среды. Таким образом, все величины, характеризующие плоскую волну, являются функциями времени и только одной координаты, например, х , если ось Ох совпадает с направлением распространения волны.

Волновое уравнение для продольной плоской волны имеет вид:

д 2 j /дx 2 = (1/c 2 )д 2 j /дt 2 . (1)

Его общее решение выражается следующим образом:

j = f 1 (ct - x)+f 2 (ct + x) , (2)

где j - потенциал или другая величина, характеризующая волновое движение среды (смещение, скорость смещения и т.д.);

с - скорость распространения волны;

f 1 и f 2 - произвольные функции, причем первое слагаемое (2) описывает плоскую волну, распространяющуюся в положительном направлении оси Ох , а второе - в противоположном направлении.

Волновые поверхности или геометрические места точек среды, где в данный момент времени фаза волны имеет одно и то же значение, для ПВ представляют собой систему параллельных плоскостей (рис. 1).

Волновые поверхности плоской волны

Рис. 1

В однородной изотропной среде волновые поверхности плоской волны перпендикулярны к направлению распространения волны (направлению переноса энергии), называемому лучом.

Временные характеристики

Время инициации (log to от -10 до 1);

Время существования (log tc от -10 до 3);

Время деградации (log td от -10 до 1);

Время оптимального проявления (log tk от -3 до 1).

Диаграмма:

Технические реализации эффекта

Техническая реализация эффекта

Строго говоря, ни одна реальная волна не является плоской волной, т.к. распространяющаяся вдоль оси x плоская волна должна охватывать всю область пространства по координатам y и z от -Ґ до +Ґ . Однако во многих случаях можно указать ограниченный по y, z участок волны, на котором она практически совпадает с плоской волной. Прежде всего это возможно в однородной изотропной среде на достаточно больших расстояниях R от источника. Так, для гармонической плоской волны фаза во всех точках плоскости, перпендикулярной направлению ее распространения, одна и та же. Можно показать, что всякую гармоническую волну можно считать плоской волной на участке шириной r << (2R l )1/2 .

Применение эффекта

Некоторые волновые технологии являются наиболее эффективными именно в приближении плоских волн. В частности, показано, что при сейсмоакустических воздействиях (с целью повышения нефте- газоотдачи) на нефтяные и газовые пласты, представленные слоистыми геологическими структурами, взаимодействие прямых и переотраженных от границ слоев плоских волновых фронтов приводит возникновению стоячих волн, инициирующих постепенные перемещение и концентрацию углеводородных флюидов в пучностях стоячей волны (см. описание ФЭ «Стоячие волны»).

> Сферические и плоские волны

Научитесь различать сферические и плоские волны . Читайте, какую волну называют плоской или сферической, источник, роль волнового фронта, характеристика.

Сферические волны возникают из точечного источника в сферическом узоре, а плоские – бесконечные параллельные плоскости, нормальные к вектору фазовой скорости.

Задача обучения

  • Вычислить источники сферических и плоских волновых узоров.

Основные пункты

  • Волны создают конструктивные и деструктивные помехи.
  • Сферические возникают из одного точечного источника в сферической форме.
  • Плоская вода – частотная, волновые фронты которой выступают бесконечными параллельными плоскостями со стабильной амплитудой.
  • В реальности не выйдет получить идеальную плоскую волну, но многие приближаются к такому состоянию.

Термины

  • Деструктивные помехи – волны мешают друг другу, а точки не совпадают.
  • Конструктивные – волны мешают и точки расположены в идентичных фазах.
  • Волновой фронт – мнимая поверхность, простирающаяся сквозь осциллирующие точки в фазе среды.

Сферические волны

Какую волну называют сферической? Разработать метод по определению способа и места распространения волн удалось Кристиану Гюйгенсу. В 1678 году он выдвинул предположение, что каждая точка, с которой сталкивается световая помеха, превращается в источник сферической волны. Суммирование вторичных волн вычисляет вид в любом времени. Этот принцип показал, что при контакте волны создают деструктивные или конструктивные помехи.

Конструктивные формируются, если волны полностью пребывают в фазе друг друга, а финальная усиливается. В деструктивных волны не соответствуют по фазам и финальная просто сокращается. Волны возникают из одного точечного источника, поэтому формируются в сферическом узоре.

Если волны генерируются из точечного источника, то выступают сферическими

Этот принцип применяет закон преломления. Каждая точка на волне создает волны, мешающие друг другу конструктивно или деструктивно

Плоские волны

Теперь давайте поймем, какую волну называют плоской. Плоская отображает частотную волну, фронты которой выступают бесконечными параллельными плоскостями со стабильной амплитудой, расположенной перпендикулярно вектору фазовой скорости. В реальности нельзя добыть истинную плоскую волну. Только плоская с бесконечной протяжностью сможет ей соответствовать. Правда, многие волны приближаются к такому состоянию. Например, антенна формирует поле, выступающее примерно плоским.

Плоские отображают бесконечное число волновых фронтов, нормальных к стороне распространения

Loading...Loading...